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Abstract 

Often some primitive random variables (e.g. the 
atomic coordinates) are non-uniformly distributed 
over the unit cell. Prior information about such distri- 
butions is often available but not always used in 
current direct-methods procedures. Examples are 
described according to which primitive random vari- 
ables are restricted to some domains (attended 
domains) or, in an equivalent way, are prevented 
from frequenting some domains (forbidden 
domains). Emphasis has been put on the fact that 
non-uniform distributions generate phase relation- 
ships which are not structure invariants or 
seminvariants, but it is also anticipated that formulas 
for estimating phase invariants and seminvariants are 
deeply affected by such prior information. 

Symbols and abbreviations 

r~: atomic positional vector of the j th  atom. 
fj: scattering factor of the j th  atom. 
N: number of atoms in the unit cell. 
Fh: structure factor with vectorial index h. 
~h: phase of Fh. 
Eh: normalized structure factor. 
Rh: modulus of the normalized structure factor. 
M: order of the point group. 
Cs = (Rs, T~): symmetry operators. R~ is the rotational 
part, Ts the translational part. 

N 

o'i= ~ f~. 
j=l 

s.i.: structure invariant. 
s.s.: structure seminvariant. 

1. The background 

A crucial result for the solution of the phase problem 
in crystallography was the discovery (Hauptman & 
Karle, 1953) of the properties of the structure 
invariants (s.i.'s) and structure seminvariant (s.s.'s). 
A s.i. is a product of structure factors Fh, Fh, . . .  Fh,. 
such that 

h i = O .  (1) 
i=1 

0108-7673 / 89/020150-08503.00 

Then .the value of the phase sum 

4~= ~ ~h, (2) 
i = !  

does not depend on the chosen origin of the unit cell 
and is said to be a s.i. itself. 

The idea of s.s. arises from the space-group sym- 
metry. The product Fh, Fh2. • • Fh,, is a s.s. if the value 
of (2) does not vary when the origin is restricted to 
the permitted origins. For each space group a vector 
hs, may be seminvariantly associated with each vector 
hi and a seminvariant modulus to, may be found: 
thus Fh, Fh2... Fh,, is a s.s. if 

h~, -= 0 (mod to~) (3) 
i=1 

is satisfied. 
The invariance and seminvariance concepts were 

crucial for the development of the joint probability 
distribution methods (Hauptman & Karle, 1953; 
Klug, 1958). The importance of the methods lies in 
the introduction of the idea that certain combinations 
of phases (s.i.'s or s.s.'s) may be calculated when the 
related structure factors have their observed values. 

More recently the representations method 
(Giacovazzo, 1977a, 1980) [see also Hauptman (1975, 
1978) for related concepts] brought back the 
seminvariance to the invariance concept. It was 
shown that: 

(a) two types of s.s.'s exist, first rank and second 
rank; 

(b) n-phase s.s.'s of first rank may be estimated 
via suitable ( n+2 ) -phase  s.i.'s; n-phase s.s.'s of 
second rank may be estimated via suitable ( n + 4 ) -  
phase s.i.'s; and 

(c) any n-phase s.i. (2) may be estimated via the 
joint probability distribution of a subset of structure 
factors chosen in a sequence of sets of reflexions, 
each contained in the succeeding one, arranged in 
order of their expected effectiveness (in the statistical 
sense) for the estimation of the s.i. Accordingly, the 
second representation of the s.i. (2) uses the magni- 
tudes involved in the estimation of the (n + 2)-phase 
invariant 
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the third representation of ~ ,  uses the magnitudes 
involved in the (n +4)-phase invariant, 

and so on, where k , l , . . . a r e  free vectors of the 
reciprocal space. In this way the information con- 
tained in all the diffraction magnitudes may be used 
in order to estimate single s.i. or s.s. 

The invariant and seminvariant concepts have com- 
pletely dominated direct-methods evolution. The 
unique phase relationships extensively used today in 
direct-methods procedures are: 

(a) one-phase s.s.'s of first rank, according to 2~ 
formulas (Hauptman & Karle, 1953; Cochran & 
Woolfson, 1955) and to their second representation 
(Cascarano, Giacovazzo, Calabrese, Burla, Nunzi, 
Polidori & Viterbo, 1984); 

(b) two-phase s.s.'s of first rank estimated accord- 
ing to their first representation (Cascarano, 
Giacovazzo, Polidori, Spagna & Viterbo, 1982); 

(c) triplet invariants estimated according to the 
Cochran (1955) formula for the non-centrosym- 
metrical case, to the Cochran & Woolfson (1955) 
formula for centrosymmetrical cases, to the MDKS 
formula (Hauptman, 1977) and to a second rep- 
resentation formula (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984); and 

(d) quartet invariants according to Schenk (1973), 
Hauptman (1975), Giacovazzo (1977b). 

It may be asked now if the invariance and 
seminvariance concepts are the only ones which may 
be invoked in order to ,obtain phase relationships. 
Only two cases have been found in the literature in 
which invariance and seminvariance conditions are 
not used for phase estimation. The first occurs when 
a correctly positioned molecular fragment is avail- 
able. Then (Sim, 1959) any phase q~h may be estimated 
from the conditional probability distribution function 

P(~hl Rh,  Rph, ~Pph) 

-~ [2zrlo(a)] -1 e x p [ a  cos (~Ph-- Cph)] 

where a=2RhRph/(1--0.'l/O'l), 0''1 is calculated by 
summing over the known partial structure, and %h 
is the phase of the structure factor for the partial 
structure. 

The second case has been recently described by 
Giacovazzo (1988) and occurs in space groups for 
which the origin may freely float along some direc- 
tions (e.g. P2, Pro, Pmm2,.. .).  If some molecular 
fragments have been correctly oriented but have 
unknown positions then phase relationships may be 
found which are not s.i.'s or s.s.'s. For example, in 
P2 the origin may float along the binary axis 2Eo~ol, 
the'~'eminvariance condition is (h, k, l ) - 0  mod (2, 
0, 2), and ~ , ,  as given by (2), may be estimated 

provided that 

h , = ( 0  k 0). 
i=1 

Likewise in Pm the corresponding algebraic condition 
on ~ ,  is 

h, = (h 0 l). 
i=1 

Apparently cases 1 and 2 seem to have little in com- 
mon. Indeed, new phase relationships arise: (a) in 
the first case from constraints to some primitive ran- 
dom variables (some atomic positions have fixed 
values); and (b) in the second case, from additional 
degrees of freedom (the origin may freely float along 
one or more directions). 

A better interpretation is, however, possible for the 
case 2: free floating of the origin has its counterpart 
in free constraints which may be applied to atomic 
coordinates of a molecular fragmem. Thus a first 
suggestion is given: phase relationships which are not 
s.i.'s or s.s.'s arise when suitable constraints are 
applied to some primitive random variables, or, in 
more general terms, when some primitive random 
variables are non-uniformly distributed over the unit 
cell. 

We will limit ourselves in this paper to deal with 
constraints on random variables which concern only 
forbidden domains (inaccessible to some random 
variables) or attended domains (one or more random 
variables are restricted to some domains). 

The idea of forbidden or attended domains is not 
new in crystallography. It was first discussed in a very 
lucid way by Bertaut (1958). Applications of forbid- 
den domains were made: (i) to the structure-factor 
statistics in order to study (Wilson, 1964; Pradhan & 
Nigam, 1986; Wilson, 1987) how excess average 
intensity in some groups of reflexions, caused by 
symmetry elements which do not produce absences, 
is compensated by diminution of the mean intensity 
elsewhere in the reciprocal space; and (ii) to deter- 
minantal methods (yon Eller, 1962; Lajz6rowicz & 
Lajz6rowicz, 1966; Knossow, de Rango, Mauguen, 
Sarrazin & Tsoucaris, 1977) in order to improve phase 
estimates. 

In both (i) and (ii) the effects are connected with 
the finite size of atoms and with the inaccessible space 
surrounding them. Attention was always focused on 
s.i. relationships, no matter whether they explicitly 
appear as IFhl 2 in intensity statistics, or as single 
triplets, or implicitly in Karle-Hauptman deter- 
minants. 

Prior information provided by attended domains 
has been used in different ways: 

(a) for structure-factor statistics (Wilson, 1949; 
Howells, Phillips & Rogers, 1950; Hauptman & Karle, 
1953; Hargreaves, 1955), in order to study the 
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influence on intensity distributions of atoms occurring 
on symmetry elements; 

(b) for phase estimates when a partial structure is 
known (Katie, 1970; Main, 1976; Prick, Beurskens & 
Gould, 1983; Giacovazzo, 1983; Camalli, Giacovazzo 
& Spagna, 1985); 

(c) when well oriented but wrongly positioned 
fragments are available (Main, 1976; Bruins Slot & 
Beurskens, 1985). 

While in cases (a) and (b) the nature of the 
attended domains is quite clear (they coincide with 
the set of known atomic coordinates), in the case (c) 
the random variables (atomic positions) may assume 
any value in the cell. However, if we look at the 
primitive random variables, that is no longer true 
(Giacovazzo, 1988). Indeed when the orientation of 
a molecular fragment is fixed, then the atomic posi- 
tions rj are no longer independent random variables: 
once r~ has been fixed, the other atomic positions in 
the same fragment may be written down as 

rj = rl + uj (4) 

where uj are vectors fixed by prior information. Thus 
rl is the only independent random variable while 
rj(j ~ 1) are variables restricted by (4). According to 
Giacovazzo (1988) restrictions on r~ due to space- 
group symmetry give rise to phase relationships which 
are not s.s.'s or s.i.'s. 

It is now clear that restrictions to some random 
variables can give rise to new phase relationships 
other than s.s.'s or s.i.'s. The number of possible 
restrictions is quite large: they may be of interest both 
in small-molecule and in macromolecular crystal- 
lography. We will give in §§ 2 and 3 a few examples 
together with a brief statistical treatment: further 
papers will be devoted to a more exhaustive prob- 
abilistic study of the subject. 

2. Phase relationships and attended domains 

Crystal structures consisting of planar (or quasi- 
planar) molecules are often solved with difficulty by 
direct methods if some kind of supplementary prior 
information is not used. Sometimes the molecular 
form of the planar fragment is known a priori while 
no information is available about orientations and 
positions of the layers in which the molecules are 
stacked. Then correct orientations may be found by 
orientation search programs, and the structure may 
be solved by translational search routines or by 
special methods such as those described by Main 
(1976), Giacovazzo (1988) and (if planes in which 
molecules are stacked are known) Bruins Slot & 
Beurskens (1985). 

Sometimes the molecular form of the planar frag- 
ments is unknown but layers in which fragments are 
stacked are a priori known. Possible sources of this 

information may be crystallochemical reasons, or pre- 
vious direct-methods trials, or diffraction data. Excel- 
lent examples of the third case are: the polytypes 
'LSeF' 140 (Nguyen-Huy Dung & Laruelle, 1980), 
10M (Nguyen-Huy Dung & Laruelle, 1977a), 8M 
(Nguyen-Huy Dung & Laruelle, 1977b), 6 0  
(Nguyen-Huy Dung, Dagron & Laruelle, 1975a), 4M 
(Nguyen-Huy Dung, Dagron & Laruelle, 1975b), 2 0  
(Nguyen-Huy Dung, 1973); the polytypes 'Fe2Ga2S5' 
3R (Dogguy-Smiri & Nguyen-Huy Dung, 1982) and 
2H (Cascarano, Dogguy-Smiri & Nguyen-Huy 
Dung, 1987); the structure KCrsSe8 (Nguyen-Huy 
Dung, Vo-van Tien, Behm & Beurskens, 1987). In all 
the above structures reflexions hkl and h,k, l+ 2n have 
nearly identical normalized structure factors, suggest- 
ing that a large percentage of atoms should be stacked 
on two parallel symmetry planes. 

Let us now suppose that the planes on which atoms 
are stacked are known but the geometry of the plane 
fragments is unknown. Then special phase relation- 
ships (which are not s.i.'s or s.s.'s) will arise according 
to the following considerations: 

(a) Assumptions: space group P1; n atoms lie on 
the fixed plane (P) while q = N - n atoms have com- 
pletely unknown positions. Then 

Fh = ~ fjexp (2 ~-ihrj)+ ~f j  exp (2 ~ihrj). 
n q 

Let ro be the positional vector of an arbitrary point 
of (P): then rj = ro+uj, where uj ~ (P). Without loss 
of generality we can choose ro_L(P): thus, according 
to our assumptions, ro is a priori fixed while uj is a 
primitive random variable conditioned to lie on (P). 
Then 

Fh = exp (2~ihro) Y.£ exp (2~-ihuj) 
n 

+Y. exp (2rrihrj). 
q 

Averaging on primitive random variables gives 

(Fh) = Q, exp (2~'ihro) if h ~ {a}, (5) 

where Q, = Z T = l f ;  

(Fh)=0 i f h ~ { a } .  

{A} is the set of reciprocal vectors perpendicular to 
(P) (for them hu t = 0). 

The phase estimate 

~h - 2~hro (6) 

provided by (5), even if remarkable from a theoretical 
point of view (it is not a s.i. or a s.s. phase relation- 
ship), is negligible for practical applications (the set 
{A} is too small). 

Let us now assume that hi and h2 are two reciprocal 
vectors satisfying the following conditions: 

h ,~{a} ,  h2~{A}, h ,+h2~{a} .  
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Then 

where 

(Fh, F h ) :  Q2 exp [2~ri(h, + h2)ro] 

Q2 = ~ fj(h,)fj(h2). 
j = l  

More generally, let 

h,~{A}, h2~{A}, . . . ,  h,,,~{A}, 

h~ + h 2 + . . .  + h,,, ~ {A}. 

Then 

( F~ F ~  . . . F~,,,) 

= Q,,, exp [2~-i(h~ +h2+ . . .+hm)ro]  

where 

(7) 

(8) 

Q~ = ~ fj,(h,)fj:(h2)...fj~(h,,,). (9) 
j = l  

Equation (8) suggests the phase indication 

q~h, + q~h24--" .4- ¢Ph., --~ 2"rr(hi +h24--. • + h,,,)ro. (10) 

Unlike (6), relations (8) may be important for prac- 
tical applications because a very large number of 
m-plets may be found satisfying (7). 

(b) Assumptions: space group P1; nz atoms lie on 
the plane (P~), for i= 1, 2 , . . . ,  r; (Pz,) parallel to (Pz~) 

r for i ~ , i 2 = l , 2 , . . . , r ; q = ( N - ~ = ~ n j )  atoms have 
completely unknown positions. Then 

F h = ~  [ ~ f:iexp 2~rih(roi+Uj~) 1 
i = l  j = l  

+ ~ f j  exp (27rihrj) 
q 

where ro~ is the distance vector of (P~) from the origin, 
uj~ ~ (P~), andf:~ is the scattering factor o f the j th  atom 
on the plane (P~). 

Then 

(Fh) = ~ Ql(i) exp(27rihro,), (11) 
i = !  

where 

n~ 

Q,(i) = ~ f j i "  
j = l  

Suppose now that relationships (7) are verified. Then 

( Fh, Fh2 . . . Fh.,) 

= ~ Qm(i) exp[2~ri(h,+h2+...+hm)ro,] (12) 
i = 1  

where 

n i 

Qm(i) = ~ fj,(h,)fj,(h2)...fji(hm). (13) 
j = l  

(c) Assumptions: n atoms lie on (P); (P)s, s =  
1 , . . . ,  M, are planes symmetry equivalent to (P). 

Then, for j =  1 , . . . ,  n, 

Csrj = Cs(ro+ u:) = R~uj + C~ro 

so that 

M 

Fh = ~ exp (2"n'ihC~ro) ~. fj exp 2-n-ihRsuj 
s = l  j = l  

+ ~ f j  ~ fj exp (2-n'ihC~rj). 
q s = l  

Accordingly (Fh) # 0 only when h is perpendicular to 
at least one of the planes (P)s ({A} will be the set of 
these reciprocal vectors); then 

(Fh ) :  ~'  Ql(s) exp (2~ihCsro). 
s 

The prime on the summation warns the reader that 
the summation goes only over planes (P)s for which 
h l (P ) s .  

Suppose now that 

h ~ { A } ,  h2~{A}, . . . ,  h , ,~{A} ,  

h i - q - h 2 W . . . + h m  ~ {A}. 

Then 

( Fh, Fh2 . . . Fh,~) 

= Q,,, ~ '  exp[2rri(h, + h 2 + . . .  + h,,,)Csro] 
$ 

where 

Qm = ~ fj(h,)fj(h2). . .f j(hm). 
j = l  

(d) As a practical application let us consider the 
crystal structure KCrsSes (Nguyen-Huy Dung, Vo- 
van Tien, Behm & Beurskens, 1988), space group 
B2/m with unique axis c, Z = 2 .  The reflexion 
intensities for homologous series hkl, l--O, 2, 4 were 
very similar: the same was true for hkl, l= 1, 3, 5. 
The heavy atoms were therefore expected to be 
located in the mirror planes (at z = 0 and z = ½). In 
the absence of any supplementary information one 
half of the atoms are here assumed to lie on the mirror 
plane at z = 0, and the other half on the mirror plane 
at z = ½ (actually, only the K atom is out of a symmetry 
plane). Then, according to (11), 

(Foo,)=(8fse+ 5fcr+ fK)+(8fse+ 5fcr+ fK)(--1) t. (14) 

While no forecast can be made about the sign of Foot 
with odd values of l, all Foo~ with even l values are 
expected to be positive. In accordance with (14), 
Eoo 2 = 2.416 and Eoo4 = 2.741 are actually positive. 

Let us now assume that 

h i -  h~k~ll ~ {001}, h 2 =  h2k212f~ {001}, 
(15) 

hi + h2 ~ {001}. 
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Table 1. B O B B Y :  indices, [E[, true phases and calcu- 
lated phases for reflexions with IEl> 1"2 satisfying 

condition h + k + l = 0 

h k 1 Iel ~,(o) ~p,. (o) h k l IEI ~, (o) ,p, (o) 
5 4 9 5.24 -11 0 3 2 5 2.17 -51 0 
0 6 6 4"21 0 0 5 1 6 2.07 218 180 
6 1 7 3"73 76 180 0 8 8 1'97 0 0 
0 7 7 3"56 90 - *  2 6 8 1"89 31 0 
4 3 7 3.27 206 180 4 5 9 1"87 275 180 
3 5 8 3"09 200 180 6 3 9 1.47 232 180 
1 7 8 2"91 197 180 1 2 3 1'46 18 0 
2 3 5 2.49 173 180 7 1 8 1"45 205 180 
3 4 7 2.49 127 180 2 4 6 1"33 -43  0 
2 5 7 2"30 154 180 2 2 4 1'30 66 0 
1 6 7 2"19 36 0 6 2 8 1-23 -76  0 
3 1 4 2-18 184 180 5 3 8 1"22 215 180 

*This is a restricted (±7r/2) phase reflexion: it cannot be estimated by 
the present theory. 

Then 

(Fh, Fh,) = 8fse(h~)fse(h2) + 5fcr(hl)fcr(h2) 

+A(h, )A(h2)[  1 + (-1)q+'2]. 

Again no forecast may be made about the sign of 
Fa, Fh2 if (l~ + 12) is odd, while all Fh, Fh, are expected 
to be positive if (11 + 12) is even. 

7968 pairs of reflexions satisfying (15) have been 
found among the 208 reflexions with largest values 
of IEI. A large percentage of them are positive, as 
expected: probabilistic considerations, here not 
developed, will rank them in order of calculated 
reliability. 

Sometimes crystallochemical information suggests 
that some heavy atoms are certainly located on proper 
symmetry axes. Examples are given below in (e) and 
( f ) .  

(e) Assumptions: P2 is the space group, n the 
number of atoms lying on binary axes. Then 

Fh = Y'-f2 exp (27rikyj) cos 2rr(hxj + lzj) 
rl 

+~f2 exp 27ri(ky2) cos 2rr(hxj + Iz2). 
q 

For p atoms the coordinates xj and yj are multiples 
of ½, so that 

( F . ) = O  

(Fh) = Ol 

( Fh , Fh2 . . . Fh,,, ) = Q,~ if 

if h¢ {A}, 
(1.6) 

if hg {Z}, 

(h~+h2+ . . .+h , , )~{A} ,  

(17) 

where {A} is the set of (hOl) reciprocal vectors with 
even values of h and I. 

( f )  As a practical application of the method let us 
consider the crystal structure CaNaN(CH2CO2)3 
(BOBBY in code), space group P213, Z - - 3  (B. L. 
Barnett, unpublished). Ca, Na and N atoms must lie 
on ternary symmetry axes. The set {A} is now the set 

of reciprocal vectors for which h + k + l = 0 :  for 
he{A} 

(Fh)= 3fCa+ 3fNa+ 3fN, (18) 

from which the estimate q~h = 0 is obtained. In Table 
1 indices, R values and true phases are shown for all 
reflexions h e {A} with R > 1.2, arranged in decreas- 
ing order of R (probabilistic considerations will rank 
them in order of phase reliability). The agreement 
between estimated and calculated phases is rather 
satisfactory, so confirming how relevant the exploited 
prior information may be. 

3. Phase relationships and forbidden domains 

Inaccessible domains may be located around sym- 
metry elements not compatible with molecule point 
symmetry. A larger variety of forbidden domains may 
be imagined for macromolecular structures, where 
diffracting matter occupies a reduced percentage of 
the unit-cell volume. 

Let P(x, y, z) be the probability that an atom lies 
at (x, y, z): then 

l i t  

(Fh) = I I I P(x,  y, z)Fh dx  dy dz. 
o o o  

In the absence of'any prior information P(x, y, z) = 1. 
If a forbidden domain 6 exists and no prior informa- 
tion is available about the distribution of the atoms 
in the allowed domain C6, then 

P ( x , y , z ) = ( 1 - D ) - '  

where D is the volume (in fractional coordinates) of 
6. Thus 

( F h ) = ( 1 - D ) - '  / F h d x d y d z  
C6 

= - ( 1 -  D)- '  J" Fh dx dy dz. (19) 
6 

The second or the third term of (19) may be used for 
practical applications according to circumstances. 

Some examples of forbidden domains are given 
below, in order to show how, from their existence, 
special phase relationships arise. 

(a) Assumptions: space group P1, forbidden 
domain defined by 

0 - < x - l ,  yl<-y<-y2,  0<-z<-l .  

Then (Fh) = 0 always, except when h e {A}, where {A} 
is the set of (0k0) reciprocal vectors. In this case 

(Foko) = [ -  cr,/( 1 - D)](1/27rk)  

x [(sin 2~rky2 - sin 2~'kyl) 

- / ( cos  2"rrky2- cos2~kyl)] 

from which (q~OkO) is easily calculated. 
Assume now that 

hl~{A}, h2ff{A}, h,+h2~{A}. 
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Then 

(Fh, Fh2) = [--0.2/( 1 -- D)] [  1/217"(kl + k2)] 

x {sin 2~r(k~ + k2)Y2- sin 2~r(k~ + k2)y~ 

- / [ c o s  2~'(k~ + k2)Y2 

- c o s  2~r(k~ + k2)y~]} (20) 

where 

N 

o-2 = Y. fj(h~)fi(h2). 
j = l  

From (20) ((q~h~+ q~h2)) is easily obtained. 
Generalization of (20) to (Fh, Fh2 • • • Fh,,) is straight- 

forward. 

(b) Assumptions: space group Pm; no atom lies 
on or near symmetry planes; inaccessible domain 
defined by 

-d<_y<_d, ½-d<_y<_½+d; 

no prior information is available on the distribution 
of the atoms in the accessible domain. 

Since 

N/2  

F h = 2  ~ fjexp[2~ri(hxj+lzj)]cosETrkyj, 
j = l  

(Fh) = 0 unless h and I are equal to zero. In this case, 
according to (19), 

(Foko) [0.1/(0"5-2d)]½~ d = cos 27rky dy 
d 

= - 0 .~/(0.5-  2d) 

x (sin 27rkd cos 27rk/2+ sin 27rkd)/27rk. 

(21) 

If k is odd, then (Foko)----0, if k is even 

Foko= [-20.~/ (O'5- 2d)](sin 2"trkd)/27rk. (22) 

Equation (22) provides reliable phase information 
only for low-resolution reflexions. In order to give 
some numerical insight, let us suppose that d --0.125 
(corresponding to about d = 2.7 and b = 21 ,~): then 

(Fo2o) =-0"640.~,  (Fo4o)=O, (Fo6o) = -0"210.1 . 

Thus only a few reliable phase estimates are supplied 
by (22), and this amount  of information is too small 
to be useful in practice. 

Let us now suppose that 

h ie{A},  h2¢{A}, hx+h2~{A}, 

where {A} is the set of reciprocal vectors (0k0) with 
even values of k. Then 

N/2  

Fh,Fh2=4 ~ fj(h,)fj(h2) cos 27rk~yj cos 27rk2yj 
j = l  

+ mixed terms 

from which 

N/2  

(FhtFh2) = 4  E fj(h,)fj(h2) 
j = l  

x (½ cos 27r(kl + k2)yj + cos 27r(kl - k2)yj) 

= [ -0 .2 / (0 "5 -  2d)]  

x {[sin 2~-(k~ + kE)d cos 27r(k~ + k2)/2 

+s in  2¢r(k~ + k2)d][27r(k~ + k2)] -1 

+ [sin 27r(k~ - kE)d cos 27r(k~ - k2)/2 

+ sin 27r(kl - k2) d ][27r(kl - k2) ]-~}. 

Since both k~ + k2 and k~ - k2 are even, (Fh, Fh2) ~ 0: 
i.e. 

-20.2 ~ sin 2"rr (kl_+_ k__2) d 
( ~'Fh'Fh2"-O.5-2d 1. 27r(kl+k2) 

sin 27r(~--k__2)d'~ (23) 
4 27r (k , -k2)  J" 

Equation (23) is more useful than (22). Indeed, by 
means of (23) a very large number of pairs (~0h, + ~0h2) 
can be estimated: the largest mean values of Eh, Eh2 
will be obtained for pairs of reflexions for which 
(kl + k2) or (k~-k2)  are sufficiently small, indepen- 
dently of whether E., or E .  2 are low- or high-reso- 
lution reflexions. 

If 

h ,~{A},  h2~{A}, h3~lA},  h , + h 2 + h a ~ { A } ,  

then (23) may be easily generalized to 

20"3 ~sin 27r(kl + k2+ k3)d 
(Fh'Fh~Fh3)=O'5-2d [ - 2 - ~  +-k-2+-k-'~ 

sin 27r(kl + k2 -  k3)d 
2 7r( kl + k2 - k3) 

sin 27r(kl - k2+ ka)d 
27r(kl - k2+ k3) 

sin 2 7r (k±.-_ k2__~ k3) d~ (24) 
-t 2rr(ki - k2 -  k3) J 

where 

N 

0.3 = ~ fj(h~)fj(h2)fj(h3). 
j = l  

The largest mean values (Eh,Eh2Eh3) will be obtained 
(in a probabilistic sense) if kl + k2 + k3 or  k~ + k2 -  k3 
or k~-  k2+ k3 or  k l -  k 2 - k 3  are small enough. 

Generalization of (24) for the estimation of 
(Fh, Fh2. . .  Fhm ) is trivial. 

(c) Assumptions: space group P2; four inaccess- 
ible domains 6i, i = 1 , . . . ,  4, of cylindrical shape of 
radius d around symmetry axes. 
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Since 

N/2 
F h = 2  ~ fj exp (27rikyj) cos 27r(hx~ + Izj), 

j=l 

(Fh) = 0 if k ¢ 0. Thus, in accordance with (19), 

4 

( F h o t )  = - o h T  -l ~ ~ cos 27r(hx+lz)  dx  dz  
i=1 61 

= - o'1 T -I ~ cos rr(hrnl + lm2) 
m I , m2=0,  1/2 

x J" cos 2rr(hx + lz) dx  dz, (25) 
6t 

where T = (ac sin/3 -4~-d2). 
According to (25), (Fhot) vanishes unless h and l 

are even numbers. 
Since 

2~rd  

.[ 5 p cos (2rrps cos ~) dp d~ = (d /s )J l (2rrsd) ,  
o o 

transforming (25) into cylindrical coordinates gives 

Fhot = --4oq T l (d/s)Jt (27rsd) ,  (26) 

where h and l are even numbers, s = 2(sin 0)A, and 
J~ is the ordinary Bessel function of order 1. 

Even if the h and I indices span a reciprocal plane, 
(26) is of limited usefulness in practice because 
reliable phase indications may be obtained only for 
low-resolution reflexions. 

Let us now suppose that 

hl~z{A}, h2¢{A}, h ,+h2c{A},  

where {A} is the set of reciprocal vectors {h01} with 
even values of h and I. Then 

(Fh, Fh:) = o'2(COS 2rr[( h I + h 2 ) x  + ( l  I + 12)z  ] 

+ cos 27r[(hl - h2)x + (li - 12)z]) 

= - o'2T-14{ ~ cos 27r[(h1 + h2)x 
61 

-I- (11 + 12)_7 ] dx dz 

+ .[ cos 2 r r [ ( h , -  h2)x+ (11 - 12)z] dx  dz} 
61 

= -4o-2T-I{(d/s l )J l (2rrs3  d) 

+ (d/sz)J2(2rrs4d)}, (27) 

where s3 and s. are 2(sin 0)/A values for (hi +h2) and 
for (hi + hzR2) reflexions respectively (R2 denotes the 
rotation matrix corresponding to the binary axis). 
Large values of (Eh,Eh2) may be obtained for small 
values of s3 and s.,  independently of whether Fh, and 
Fh2 are low- or high-resolution reflexions. Relation 
(27) may thus be applied more widely than (26). 

It is not difficult to verify that, if 

hi, h2, h3~ {A}, h l+h2+h3~  {A}, 

then 

(Ft, Fh2Fh 3) = -4o'3 T-'{(d/s4)J1(2rrs4d) 

+ (d/ss)J , (2rrssd)  + (d/s6)J,(2rrs6d) • 

+ (a/s7)J,(2~s7a)},  (28) 

w h e r e  $4, $5, $6, s 7 are the values of 2(sin 0)/A for 
Fh~+h,+h,, Fh,+h.+h,R~_, Fh,+h~R.+h,, Fh,+h.R.+h,a, respec- 
tively. 

The importance of (26), (27) and (28) for practical 
applications will depend on the ratio (volume of the 
forbidden domain) /  (volume of cell). If d more or 
less represents the average atomic radius, forbidden 
domains around inversion centres are rather negli- 
gible: accordingly, inaccessible domains around mir- 
ror planes will influence phase estimates more than 
domains around proper symmetry axes. 

As a practical example, we quote for CEPHA 
[C18H21NO3, space group C2,oZ = 8; a = 22.834, b = 
8.158, c =  19.534 A,,/3 = 117.7 (Arora, Bates, Grady, 
Germain, Declercq & Powell, 1976)] the phase values 
for seminvariant reflexions for which I h + 1[ <- 4: 

q~200 = 180; q~002 = 180; q~004= 180°; 

(~400 = 0; (~202 = 180; q~20~ = 180 °. 

Inaccessible domains around binary axes suggest 
the phase value 180 ° for all of them. 

4. Concluding remarks 

It has been shown that non-uniform distributions of 
the primitive random variables (e.g. the atomic coor- 
dinates) over the unit cell may give rise to phase 
relationships which are not s.i.'s or s.s.'s. In this 
sense a very general and frequent case occurs in 
macromolecule crystallography when the molecular 
envelope is known: the electron probability density 
in the solvent region is set to a constant low value 
(solvent flattening), while different positivity con- 
straints are applied to the protein region. 

Attended domains sometimes coincide with sym- 
metry elements, inaccessible domains sometimes lie 
around symmetry elements. In these cases combina- 
tions of phases predictable by the present method 
occasionally reduce to s.s.'s of first rank. 

A good example is given in § 2(f):  in P213 s.s.'s 
are reflexions h for which h + k + l-= 0 (mod 2), and 
first-rank seminvariants are reflexions for which 
(Giacovazzo, 1980) one of the following algebraic 
conditions is satisfied (by h or its symmetry 
equivalents): 

(i) ( h + k + l ) = O ( m o d O )  because of 3fl~11 
(ii) (h, k, l) -= 0 mod(2, 2, 0) because of 2tool 1. 

Since attended domains for Na, Ca, N are ternary 
axes, only first-rank seminvariants of type (i) may be 
estimated. 

If attended domains coincide with or inaccessible 
domains lie around the allowed origins of the space 
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group, then the combinations of phases which are 
predictable by our method occasionally coincide with 
the s.s.'s. For example, in P2/m s.s.'s are reflexions 
for which (h, k, l) - 0 rood(2, 2, 2), and may be esti- 
mated if allowed domains coincide with or inaccess- 
ible domains lie around inversion centres. 

First-rank s.s.'s are today estimated via conditional 
probability distributions, given suitable sets of 
diffraction magnitudes on the minimal assumption 
that positive random variables (i.e. the atomic posi- 
tions) are uniformly distributed over the unit cell. 

In these conditions the estimate of the s.s.'s requires 
the use, as prior information, of a suitable set of 
diffraction magnitudes. For the example given in 
§ 2(d),  the estimation of ~0o6 requires statistical calcu- 
lations involving the set of magnitudes {Rhk3} , with 
h and k free indices. According to the theory of 
representations, the estimation of the two-phase s.s. 
(~352 + ~.356 requires statistical calculations involving 
the basis and the cross magnitudes of the sets of 
quartets 

~352 "~- ~356 -~- ~hk4 "Jr- ~0/~/~4, 

~t)352 -1" ~t)~ + ~hk2 + ~/~/~2, 

where again h and k are free indices. 
By contrast, if prior information about attended 

domains is exploited, the estimation of ~Poo6 and of 
~Pa52+q~, may be obtained via R006 and RasER356 
respectively (even if improved estimates could be 
attained if supplementary diffraction magnitudes are 
used). 

Since any s.s. can be estimated via suitable sets of 
s.i.'s, a further question arises: are the s.i.'s affected 
by the presence of attended domains? The answer is 
probably positive: the effectiveness of the new for- 
mulas will depend on the types of attended or inac- 
cessible domains, and, in general, on the distribution 
of primitive random variables over the unit cell. Fur- 
ther contributions, however, are needed for the study 
of such probabilistic aspects. 
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